Range restricted interpolation using Gregory's rational cubic splines
نویسندگان
چکیده
منابع مشابه
Range restricted interpolation using Gregory’s rational cubic splines
The construction of range restricted univariate and bivariate interpolants to gridded data is considered. We apply Gregory’s rational cubic C splines as well as related rational quintic C splines. Assume that the lower and upper obstacles are compatible with the data set. Then the tension parameters occurring in the mentioned spline classes can be always determined in such a way that range rest...
متن کاملRange Restricted Interpolation Using Cubic Bezier Triangles
A range restricted C interpolation local scheme to scattered data is derived. Each macro triangle of the triangulated domain is split into three mini triangles and the interpolating surface on each mini triangle is a cubic Bézier triangle. Sufficient conditions derived for the non-negativity of these cubic Bézier triangles are expressed as lower bounds to the Bézier ordinates. The non-negativit...
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملInteractive shape preserving interpolation by curvature continuous rational cubic splines
A scheme is described for interactively modifying the shape of convexity preserving planar interpolating curves. An initial curve is obtained by patching together rational cubic and straight line segments. This scheme has, in general, geometric continuity of order 2(G continuity) and preserves the local convexity of the data. A method for interactively modifying such curves, while maintaining t...
متن کاملInterpolation by Cubic Splines on Triangulations
We describe an algorithm for constructing point sets which admit unique Lagrange and Hermite interpolation from the space S 1 3 (() of C 1 splines of degree 3 deened on a general class of triangulations. The triangulations consist of nested polygons whose vertices are connected by line segments. In particular, we have to determine the dimension of S 1 3 (() which is not known for arbitrary tria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1999
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(98)00257-x